

Wexpect version 4.0.0

[image: Build status]

 [https://ci.appveyor.com/project/raczben/wexpect]Wexpect is a Windows variant of Pexpect [https://pexpect.readthedocs.io/en/stable/]
Wexpect and Pexpect makes Python a better tool for controlling other applications.

Wexpect is a Python module for spawning child applications;
controlling them; and responding to expected patterns in their output.
Wexpect works like Don Libes’ Expect. Wexpect allows your script to
spawn a child application and control it as if a human were typing
commands.

Wexpect can be used for automating interactive applications such as
ssh, ftp, passwd, telnet, etc. It can be used to a automate setup
scripts for duplicating software package installations on different
servers. It can be used for automated software testing.
Wexpect highly depends on Mark Hammond’s pywin32 [https://github.com/mhammond/pywin32]
which provides access to many of the Windows APIs from Python.

Install

Wexpect is on PyPI, and can be installed with standard tools:

pip install wexpect

Hello Wexpect

To interract with a child process use spawn method:

import wexpect
child = wexpect.spawn('cmd.exe')
child.expect('>')
child.sendline('ls')
child.expect('>')
print(child.before)
child.sendline('exit')

For more information see examples [https://github.com/raczben/wexpect/tree/master/examples] folder.

Contents:

	API documentation
	Wexpect symbols

	Wexpect modules

	History
	Refactor

	Old vs new

Wexpect is developed on Github [http://github.com/raczben/wexpect]. Please
report issues [https://github.com/raczben/wexpect/issues] there as well.

Indices and tables

	Index

	Module Index

	Search Page

API documentation

Wexpect symbols

Wexpect package has the following symbols. (Exported by __all__ in code:__init__.py)

spawn

This is the main class interface for Wexpect. Use this class to start and control child applications.
There are two implementation: wexpect.host.SpawnPipe uses Windows-Pipe for communicate child.
wexpect.SpawnSocket uses TCP socket. Choose the default implementation with
WEXPECT_SPAWN_CLASS environment variable, or the wexpect.host.SpawnPipe will be
chosen by default.

SpawnPipe

wexpect.host.SpawnPipe is the default spawn class, but you can access it directly with its
exact name.

SpawnSocket

wexpect.host.SpawnSocket is the secondary spawn class, you can access it directly with its
exact name or by setting the WEXPECT_SPAWN_CLASS environment variable to SpawnSocket

run

wexpect.host.run() runs the given command; waits for it to finish; then returns all output as a string.
This function is similar to os.system().

EOF

wexpect.wexpect_util.EOF is an exception. This usually means the child has exited.

TIMEOUT

wexpect.wexpect_util.TIMEOUT raised when a read time exceeds the timeout.

__version__

This gives back the version of the wexpect release. Versioning is handled by the
pbr [https://pypi.org/project/pbr/] package, which derives it from Git tags.

spawn_class_name

Contains the default spawn class’ name even if the user has not specified it. The value can be
SpawnPipe or SpawnSocket

ConsoleReaderSocket

For advanced users only!
wexpect.console_reader.ConsoleReaderSocket

ConsoleReaderPipe

For advanced users only!
wexpect.console_reader.ConsoleReaderPipe

Wexpect modules

	Host
	Functions

	SpawnPipe

	SpawnSocket

	Wexpect util
	Functions

	ExceptionPexpect

	EOF

	TIMEOUT

	Console reader
	ConsoleReaderPipe

	ConsoleReaderSocket

Host

Host module contains calsses and functions for the host application. These will spawn the child
application. These host classes (and some util classes) are the interface for the user. Handle other
modules as protected.

Functions

	
host.run(timeout=-1, withexitstatus=False, events=None, extra_args=None, logfile=None, cwd=None, env=None, **kwargs)

	This function runs the given command; waits for it to finish; then
returns all output as a string. STDERR is included in output. If the full
path to the command is not given then the path is searched.

Note that lines are terminated by CR/LF (rn) combination even on
UNIX-like systems because this is the standard for pseudo ttys. If you set
‘withexitstatus’ to true, then run will return a tuple of (command_output,
exitstatus). If ‘withexitstatus’ is false then this returns just
command_output.

The run() function can often be used instead of creating a spawn instance.
For example, the following code uses spawn:

child = spawn('scp foo myname@host.example.com:.')
child.expect ('(?i)password')
child.sendline (mypassword)

The previous code can be replace with the following:

run('scp foo user@example.com:.', events={'(?i)password': mypassword})

Examples

Start the apache daemon on the local machine:

run ("/usr/local/apache/bin/apachectl start")

Check in a file using SVN:

run ("svn ci -m 'automatic commit' my_file.py")

Run a command and capture exit status:

(command_output, exitstatus) = run ('ls -l /bin', withexitstatus=1)

The following will run SSH and execute ‘ls -l’ on the remote machine. The
password ‘secret’ will be sent if the ‘(?i)password’ pattern is ever seen:

run ("ssh username@machine.example.com 'ls -l'", events={'(?i)password':'secret\n'})

This will start mencoder to rip a video from DVD. This will also display
progress ticks every 5 seconds as it runs. For example:

from wexpect import *
def print_ticks(d):
 print d['event_count'],
run("mencoder dvd://1 -o video.avi -oac copy -ovc copy",
 events={TIMEOUT:print_ticks}, timeout=5)

The ‘events’ argument should be a dictionary of patterns and responses.
Whenever one of the patterns is seen in the command out run() will send the
associated response string. Note that you should put newlines in your
string if Enter is necessary. The responses may also contain callback
functions. Any callback is function that takes a dictionary as an argument.
The dictionary contains all the locals from the run() function, so you can
access the child spawn object or any other variable defined in run()
(event_count, child, and extra_args are the most useful). A callback may
return True to stop the current run process otherwise run() continues until
the next event. A callback may also return a string which will be sent to
the child. ‘extra_args’ is not used by directly run(). It provides a way to
pass data to a callback function through run() through the locals
dictionary passed to a callback.

SpawnPipe

	
class wexpect.host.SpawnPipe(command, args=[], timeout=30, maxread=60000, searchwindowsize=None, logfile=None, cwd=None, env=None, codepage=None, echo=True, interact=False, **kwargs)

	
	
__init__(command, args=[], timeout=30, maxread=60000, searchwindowsize=None, logfile=None, cwd=None, env=None, codepage=None, echo=True, interact=False, **kwargs)

	This starts the given command in a child process. This does all the
fork/exec type of stuff for a pty. This is called by __init__. If args
is empty then command will be parsed (split on spaces) and args will be
set to parsed arguments.

The pid and child_fd of this object get set by this method.
Note that it is difficult for this method to fail.
You cannot detect if the child process cannot start.
So the only way you can tell if the child process started
or not is to try to read from the file descriptor. If you get
EOF immediately then it means that the child is already dead.
That may not necessarily be bad because you may haved spawned a child
that performs some task; creates no stdout output; and then dies.

	
expect(pattern, timeout=-1, searchwindowsize=None)

	This seeks through the stream until a pattern is matched. The
pattern is overloaded and may take several types. The pattern can be a
StringType, EOF, a compiled re, or a list of any of those types.
Strings will be compiled to re types. This returns the index into the
pattern list. If the pattern was not a list this returns index 0 on a
successful match. This may raise exceptions for EOF or TIMEOUT. To
avoid the EOF or TIMEOUT exceptions add EOF or TIMEOUT to the pattern
list. That will cause expect to match an EOF or TIMEOUT condition
instead of raising an exception.

If you pass a list of patterns and more than one matches, the first match
in the stream is chosen. If more than one pattern matches at that point,
the leftmost in the pattern list is chosen. For example:

the input is 'foobar'
index = p.expect (['bar', 'foo', 'foobar'])
returns 1 ('foo') even though 'foobar' is a "better" match

Please note, however, that buffering can affect this behavior, since
input arrives in unpredictable chunks. For example:

the input is 'foobar'
index = p.expect (['foobar', 'foo'])
returns 0 ('foobar') if all input is available at once,
but returs 1 ('foo') if parts of the final 'bar' arrive late

After a match is found the instance attributes ‘before’, ‘after’ and
‘match’ will be set. You can see all the data read before the match in
‘before’. You can see the data that was matched in ‘after’. The
re.MatchObject used in the re match will be in ‘match’. If an error
occurred then ‘before’ will be set to all the data read so far and
‘after’ and ‘match’ will be None.

If timeout is -1 then timeout will be set to the self.timeout value.

A list entry may be EOF or TIMEOUT instead of a string. This will
catch these exceptions and return the index of the list entry instead
of raising the exception. The attribute ‘after’ will be set to the
exception type. The attribute ‘match’ will be None. This allows you to
write code like this:

index = p.expect (['good', 'bad', wexpect.EOF, wexpect.TIMEOUT])
if index == 0:
 do_something()
elif index == 1:
 do_something_else()
elif index == 2:
 do_some_other_thing()
elif index == 3:
 do_something_completely_different()

instead of code like this:

try:
 index = p.expect (['good', 'bad'])
 if index == 0:
 do_something()
 elif index == 1:
 do_something_else()
except EOF:
 do_some_other_thing()
except TIMEOUT:
 do_something_completely_different()

These two forms are equivalent. It all depends on what you want. You
can also just expect the EOF if you are waiting for all output of a
child to finish. For example:

p = wexpect.spawn('/bin/ls')
p.expect (wexpect.EOF)
print p.before

If you are trying to optimize for speed then see expect_list().

	
expect_exact(pattern_list, timeout=-1, searchwindowsize=-1)

	This is similar to expect(), but uses plain string matching instead
of compiled regular expressions in ‘pattern_list’. The ‘pattern_list’
may be a string; a list or other sequence of strings; or TIMEOUT and
EOF.

This call might be faster than expect() for two reasons: string
searching is faster than RE matching and it is possible to limit the
search to just the end of the input buffer.

This method is also useful when you don’t want to have to worry about
escaping regular expression characters that you want to match.

	
expect_list(pattern_list, timeout=-1, searchwindowsize=-1)

	This takes a list of compiled regular expressions and returns the
index into the pattern_list that matched the child output. The list may
also contain EOF or TIMEOUT (which are not compiled regular
expressions). This method is similar to the expect() method except that
expect_list() does not recompile the pattern list on every call. This
may help if you are trying to optimize for speed, otherwise just use
the expect() method. This is called by expect(). If timeout==-1 then
the self.timeout value is used. If searchwindowsize==-1 then the
self.searchwindowsize value is used.

	
compile_pattern_list(patterns)

	This compiles a pattern-string or a list of pattern-strings.
Patterns must be a StringType, EOF, TIMEOUT, SRE_Pattern, or a list of
those. Patterns may also be None which results in an empty list (you
might do this if waiting for an EOF or TIMEOUT condition without
expecting any pattern).

This is used by expect() when calling expect_list(). Thus expect() is
nothing more than:

cpl = self.compile_pattern_list(pl)
return self.expect_list(cpl, timeout)

If you are using expect() within a loop it may be more
efficient to compile the patterns first and then call expect_list().
This avoid calls in a loop to compile_pattern_list():

cpl = self.compile_pattern_list(my_pattern)
while some_condition:
 ...
 i = self.expect_list(clp, timeout)
 ...

	
send(s, delaybeforesend=None)

	Virtual definition

	
sendline(s='')

	This is like send(), but it adds a line feed (os.linesep). This
returns the number of bytes written.

	
write(s)

	This is similar to send() except that there is no return value.

	
writelines(sequence)

	This calls write() for each element in the sequence. The sequence
can be any iterable object producing strings, typically a list of
strings. This does not add line separators There is no return value.

	
sendeof()

	This sends an EOF to the child. This sends a character which causes
the pending parent output buffer to be sent to the waiting child
program without waiting for end-of-line. If it is the first character
of the line, the read() in the user program returns 0, which signifies
end-of-file. This means to work as expected a sendeof() has to be
called at the beginning of a line. This method does not send a newline.
It is the responsibility of the caller to ensure the eof is sent at the
beginning of a line.

	
read(size=-1)

	This reads at most “size” bytes from the file (less if the read hits
EOF before obtaining size bytes). If the size argument is negative or
omitted, read all data until EOF is reached. The bytes are returned as
a string object. An empty string is returned when EOF is encountered
immediately.

	
readline(size=-1)

	This reads and returns one entire line. A trailing newline is kept
in the string, but may be absent when a file ends with an incomplete
line. Note: This readline() looks for a rn pair even on UNIX
because this is what the pseudo tty device returns. So contrary to what
you may expect you will receive the newline as rn. An empty string
is returned when EOF is hit immediately. Currently, the size argument is
mostly ignored, so this behavior is not standard for a file-like
object. If size is 0 then an empty string is returned.

	
read_nonblocking(size=1)

	This reads at most size characters from the child application. If
the end of file is read then an EOF exception will be raised.

This is not effected by the ‘size’ parameter, so if you call
read_nonblocking(size=100, timeout=30) and only one character is
available right away then one character will be returned immediately.
It will not wait for 30 seconds for another 99 characters to come in.

This is a wrapper around Wtty.read().

SpawnSocket

	
class wexpect.host.SpawnSocket(command, args=[], timeout=30, maxread=60000, searchwindowsize=None, logfile=None, cwd=None, env=None, codepage=None, echo=True, port=4321, host='127.0.0.1', interact=False, **kwargs)

	
	
__init__(command, args=[], timeout=30, maxread=60000, searchwindowsize=None, logfile=None, cwd=None, env=None, codepage=None, echo=True, port=4321, host='127.0.0.1', interact=False, **kwargs)

	This starts the given command in a child process. This does all the
fork/exec type of stuff for a pty. This is called by __init__. If args
is empty then command will be parsed (split on spaces) and args will be
set to parsed arguments.

The pid and child_fd of this object get set by this method.
Note that it is difficult for this method to fail.
You cannot detect if the child process cannot start.
So the only way you can tell if the child process started
or not is to try to read from the file descriptor. If you get
EOF immediately then it means that the child is already dead.
That may not necessarily be bad because you may haved spawned a child
that performs some task; creates no stdout output; and then dies.

	
expect(pattern, timeout=-1, searchwindowsize=None)

	This seeks through the stream until a pattern is matched. The
pattern is overloaded and may take several types. The pattern can be a
StringType, EOF, a compiled re, or a list of any of those types.
Strings will be compiled to re types. This returns the index into the
pattern list. If the pattern was not a list this returns index 0 on a
successful match. This may raise exceptions for EOF or TIMEOUT. To
avoid the EOF or TIMEOUT exceptions add EOF or TIMEOUT to the pattern
list. That will cause expect to match an EOF or TIMEOUT condition
instead of raising an exception.

If you pass a list of patterns and more than one matches, the first match
in the stream is chosen. If more than one pattern matches at that point,
the leftmost in the pattern list is chosen. For example:

the input is 'foobar'
index = p.expect (['bar', 'foo', 'foobar'])
returns 1 ('foo') even though 'foobar' is a "better" match

Please note, however, that buffering can affect this behavior, since
input arrives in unpredictable chunks. For example:

the input is 'foobar'
index = p.expect (['foobar', 'foo'])
returns 0 ('foobar') if all input is available at once,
but returs 1 ('foo') if parts of the final 'bar' arrive late

After a match is found the instance attributes ‘before’, ‘after’ and
‘match’ will be set. You can see all the data read before the match in
‘before’. You can see the data that was matched in ‘after’. The
re.MatchObject used in the re match will be in ‘match’. If an error
occurred then ‘before’ will be set to all the data read so far and
‘after’ and ‘match’ will be None.

If timeout is -1 then timeout will be set to the self.timeout value.

A list entry may be EOF or TIMEOUT instead of a string. This will
catch these exceptions and return the index of the list entry instead
of raising the exception. The attribute ‘after’ will be set to the
exception type. The attribute ‘match’ will be None. This allows you to
write code like this:

index = p.expect (['good', 'bad', wexpect.EOF, wexpect.TIMEOUT])
if index == 0:
 do_something()
elif index == 1:
 do_something_else()
elif index == 2:
 do_some_other_thing()
elif index == 3:
 do_something_completely_different()

instead of code like this:

try:
 index = p.expect (['good', 'bad'])
 if index == 0:
 do_something()
 elif index == 1:
 do_something_else()
except EOF:
 do_some_other_thing()
except TIMEOUT:
 do_something_completely_different()

These two forms are equivalent. It all depends on what you want. You
can also just expect the EOF if you are waiting for all output of a
child to finish. For example:

p = wexpect.spawn('/bin/ls')
p.expect (wexpect.EOF)
print p.before

If you are trying to optimize for speed then see expect_list().

	
expect_exact(pattern_list, timeout=-1, searchwindowsize=-1)

	This is similar to expect(), but uses plain string matching instead
of compiled regular expressions in ‘pattern_list’. The ‘pattern_list’
may be a string; a list or other sequence of strings; or TIMEOUT and
EOF.

This call might be faster than expect() for two reasons: string
searching is faster than RE matching and it is possible to limit the
search to just the end of the input buffer.

This method is also useful when you don’t want to have to worry about
escaping regular expression characters that you want to match.

	
expect_list(pattern_list, timeout=-1, searchwindowsize=-1)

	This takes a list of compiled regular expressions and returns the
index into the pattern_list that matched the child output. The list may
also contain EOF or TIMEOUT (which are not compiled regular
expressions). This method is similar to the expect() method except that
expect_list() does not recompile the pattern list on every call. This
may help if you are trying to optimize for speed, otherwise just use
the expect() method. This is called by expect(). If timeout==-1 then
the self.timeout value is used. If searchwindowsize==-1 then the
self.searchwindowsize value is used.

	
compile_pattern_list(patterns)

	This compiles a pattern-string or a list of pattern-strings.
Patterns must be a StringType, EOF, TIMEOUT, SRE_Pattern, or a list of
those. Patterns may also be None which results in an empty list (you
might do this if waiting for an EOF or TIMEOUT condition without
expecting any pattern).

This is used by expect() when calling expect_list(). Thus expect() is
nothing more than:

cpl = self.compile_pattern_list(pl)
return self.expect_list(cpl, timeout)

If you are using expect() within a loop it may be more
efficient to compile the patterns first and then call expect_list().
This avoid calls in a loop to compile_pattern_list():

cpl = self.compile_pattern_list(my_pattern)
while some_condition:
 ...
 i = self.expect_list(clp, timeout)
 ...

	
send(s, delaybeforesend=None)

	Virtual definition

	
sendline(s='')

	This is like send(), but it adds a line feed (os.linesep). This
returns the number of bytes written.

	
write(s)

	This is similar to send() except that there is no return value.

	
writelines(sequence)

	This calls write() for each element in the sequence. The sequence
can be any iterable object producing strings, typically a list of
strings. This does not add line separators There is no return value.

	
sendeof()

	This sends an EOF to the child. This sends a character which causes
the pending parent output buffer to be sent to the waiting child
program without waiting for end-of-line. If it is the first character
of the line, the read() in the user program returns 0, which signifies
end-of-file. This means to work as expected a sendeof() has to be
called at the beginning of a line. This method does not send a newline.
It is the responsibility of the caller to ensure the eof is sent at the
beginning of a line.

	
read(size=-1)

	This reads at most “size” bytes from the file (less if the read hits
EOF before obtaining size bytes). If the size argument is negative or
omitted, read all data until EOF is reached. The bytes are returned as
a string object. An empty string is returned when EOF is encountered
immediately.

	
readline(size=-1)

	This reads and returns one entire line. A trailing newline is kept
in the string, but may be absent when a file ends with an incomplete
line. Note: This readline() looks for a rn pair even on UNIX
because this is what the pseudo tty device returns. So contrary to what
you may expect you will receive the newline as rn. An empty string
is returned when EOF is hit immediately. Currently, the size argument is
mostly ignored, so this behavior is not standard for a file-like
object. If size is 0 then an empty string is returned.

	
read_nonblocking(size=1)

	This reads at most size characters from the child application. If
the end of file is read then an EOF exception will be raised.

This is not effected by the ‘size’ parameter, so if you call
read_nonblocking(size=100, timeout=30) and only one character is
available right away then one character will be returned immediately.
It will not wait for 30 seconds for another 99 characters to come in.

This is a wrapper around Wtty.read().

Wexpect util

Wexpect is a Windows variant of pexpect https://pexpect.readthedocs.io.

Wexpect is a Python module for spawning child applications and controlling
them automatically.

wexpect util contains small functions, and classes, which are used in multiple classes.
The command line argument parsers, and the Exceptions placed here.

Functions

	
wexpect_util.str2bool()

	

	
wexpect_util.spam(message, *args, **kws)

	Very verbose debug dunction.

	
wexpect_util.init_logger()

	Initializes the logger. I wont measure coverage for this debug method.

	
wexpect_util.split_command_line(escape_char='^')

	This splits a command line into a list of arguments. It splits arguments
on spaces, but handles embedded quotes, doublequotes, and escaped
characters. It’s impossible to do this with a regular expression, so I
wrote a little state machine to parse the command line.

	
wexpect_util.join_args()

	Joins arguments a command line. It quotes all arguments that contain
spaces or any of the characters ^!$%&()[]{}=;’+,`~

ExceptionPexpect

	
class wexpect.wexpect_util.ExceptionPexpect(value)

	Base class for all exceptions raised by this module.

EOF

	
class wexpect.wexpect_util.EOF(value)

	Raised when EOF is read from a child. This usually means the child has exited.
The user can wait to EOF, which means he waits the end of the execution of the child process.

TIMEOUT

	
class wexpect.wexpect_util.TIMEOUT(value)

	Raised when a read time exceeds the timeout.

Console reader

Wexpect is a Windows variant of pexpect https://pexpect.readthedocs.io.

Wexpect is a Python module for spawning child applications and controlling
them automatically.

console_reader Implements a virtual terminal, and starts the child program.
The main wexpect.spawn class connect to this class to reach the child’s terminal.

ConsoleReaderPipe

	
class wexpect.console_reader.ConsoleReaderPipe(path, host_pid, codepage=None, window_size_x=80, window_size_y=25, buffer_size_x=80, buffer_size_y=16000, local_echo=True, interact=False, **kwargs)

	
	
__init__(path, host_pid, codepage=None, window_size_x=80, window_size_y=25, buffer_size_x=80, buffer_size_y=16000, local_echo=True, interact=False, **kwargs)

	Initialize the console starts the child in it and reads the console periodically.

	Args:

	path (str): Child’s executable with arguments.
parent_pid (int): Parent (aka. host) process process-ID
codepage (:obj:, optional): Output console code page.

	
read_loop()

	

	
suspend_child()

	Pauses the main thread of the child process.

	
resume_child()

	Un-pauses the main thread of the child process.

	
refresh_console()

	Clears the console after pausing the child and
reading all the data currently on the console.

	
terminate_child()

	

	
isalive(process)

	True if the child is still alive, false otherwise

	
write(s)

	Writes input into the child consoles input buffer.

	
createKeyEvent(char)

	Creates a single key record corrosponding to
the ascii character char.

	
initConsole(consout=None, window_size_x=80, window_size_y=25, buffer_size_x=80, buffer_size_y=16000)

	

	
parseData(s)

	Ensures that special characters are interpretted as
newlines or blanks, depending on if there written over
characters or screen-buffer-fill characters.

	
getConsoleOut()

	

	
getCoord(offset)

	Converts an offset to a point represented as a tuple.

	
getOffset(coord)

	Converts a tuple-point to an offset.

	
readConsole(startCo, endCo)

	Reads the console area from startCo to endCo and returns it
as a string.

	
readConsoleToCursor()

	Reads from the current read position to the current cursor
position and inserts the string into self.__buffer.

	
interact()

	Displays the child console for interaction.

	
sendeof()

	This sends an EOF to the host. This sends a character which inform the host that child
has been finished, and all of it’s output has been send to host.

	
create_connection(**kwargs)

	

	
close_connection()

	

	
send_to_host(msg)

	

	
get_from_host()

	

ConsoleReaderSocket

	
class wexpect.console_reader.ConsoleReaderSocket(path, host_pid, codepage=None, window_size_x=80, window_size_y=25, buffer_size_x=80, buffer_size_y=16000, local_echo=True, interact=False, **kwargs)

	
	
__init__(path, host_pid, codepage=None, window_size_x=80, window_size_y=25, buffer_size_x=80, buffer_size_y=16000, local_echo=True, interact=False, **kwargs)

	Initialize the console starts the child in it and reads the console periodically.

	Args:

	path (str): Child’s executable with arguments.
parent_pid (int): Parent (aka. host) process process-ID
codepage (:obj:, optional): Output console code page.

	
read_loop()

	

	
suspend_child()

	Pauses the main thread of the child process.

	
resume_child()

	Un-pauses the main thread of the child process.

	
refresh_console()

	Clears the console after pausing the child and
reading all the data currently on the console.

	
terminate_child()

	

	
isalive(process)

	True if the child is still alive, false otherwise

	
write(s)

	Writes input into the child consoles input buffer.

	
createKeyEvent(char)

	Creates a single key record corrosponding to
the ascii character char.

	
initConsole(consout=None, window_size_x=80, window_size_y=25, buffer_size_x=80, buffer_size_y=16000)

	

	
parseData(s)

	Ensures that special characters are interpretted as
newlines or blanks, depending on if there written over
characters or screen-buffer-fill characters.

	
getConsoleOut()

	

	
getCoord(offset)

	Converts an offset to a point represented as a tuple.

	
getOffset(coord)

	Converts a tuple-point to an offset.

	
readConsole(startCo, endCo)

	Reads the console area from startCo to endCo and returns it
as a string.

	
readConsoleToCursor()

	Reads from the current read position to the current cursor
position and inserts the string into self.__buffer.

	
interact()

	Displays the child console for interaction.

	
sendeof()

	This sends an EOF to the host. This sends a character which inform the host that child
has been finished, and all of it’s output has been send to host.

	
create_connection(**kwargs)

	

	
close_connection()

	

	
send_to_host(msg)

	

	
get_from_host()

	

History

Wexpect was a one-file code developed at University of Washington. There were several
copy [https://gist.github.com/anthonyeden/8488763] and
reference [https://mediarealm.com.au/articles/python-pexpect-windows-wexpect/]
to this code with very few (almost none) documentation nor integration.

This project fixes these limitations, with example codes, tests, and pypi integration.

Refactor

The original wexpect was a monolite, one-file code, with several structural weaknesses. This leads
me to rewrite the whole code. The first variant of the new structure is delivered with
v3.2.0 [https://pypi.org/project/wexpect/3.2.0/]. (The default is the old variant
(legacy_wexpect) in v3.2.0. WEXPECT_SPAWN_CLASS environment variable can choose the
new-structured implementation.) Now SpawnPipe is the default spawn class.

Old vs new

But what is the difference between the old and new and what was the problem with the old?

Generally, wexpect (both old and new) has three processes:

	host is our original python script/program, which want to launch the child.

	console is a process which started by the host, and launches the child. (This is a python script)

	child is the process which want to be launced.

The child and the console has a common Windows console, distict from the host.

The legacy_wexpect’s console is a thin script, almost do nothing. It initializes the Windows’s
console, and monitors the host and child processes. The magic is done by the host process, which has
the switchTo() and switchBack() functions, which (de-) attaches the child-console
Windows-console. The host manipulates the child’s console directly. This direct manipulation is the
main structural weakness. The following task/use-cases are hard/impossible:

	thread-safe multiprocessing of the host.

	logging (both console and host)

	using in graphical IDE or with pytest

	This variant is highly depends on the pywin32 package.

The new structure’s console is a thick script. The console process do the major console manipulation,
which is controlled by the host via socket (see SpawnSocket) or named-pipe (SpawnPipe). The host
only process the except-loops.

 Python Module Index

 w

 		 	

 		
 w	

 	[image: -]
 	
 wexpect	

 	
 	
 wexpect.console_reader	

 	
 	
 wexpect.host	

 	
 	
 wexpect.wexpect_util	

Index

 _
 | C
 | E
 | G
 | I
 | J
 | P
 | R
 | S
 | T
 | W

_

 	
 	__init__() (wexpect.console_reader.ConsoleReaderPipe method)

 	(wexpect.console_reader.ConsoleReaderSocket method)

 	(wexpect.host.SpawnPipe method)

 	(wexpect.host.SpawnSocket method)

C

 	
 	close_connection() (wexpect.console_reader.ConsoleReaderPipe method)

 	(wexpect.console_reader.ConsoleReaderSocket method)

 	compile_pattern_list() (wexpect.host.SpawnPipe method)

 	(wexpect.host.SpawnSocket method)

 	ConsoleReaderPipe (class in wexpect.console_reader)

 	
 	ConsoleReaderSocket (class in wexpect.console_reader)

 	create_connection() (wexpect.console_reader.ConsoleReaderPipe method)

 	(wexpect.console_reader.ConsoleReaderSocket method)

 	createKeyEvent() (wexpect.console_reader.ConsoleReaderPipe method)

 	(wexpect.console_reader.ConsoleReaderSocket method)

E

 	
 	EOF (class in wexpect.wexpect_util)

 	ExceptionPexpect (class in wexpect.wexpect_util)

 	expect() (wexpect.host.SpawnPipe method)

 	(wexpect.host.SpawnSocket method)

 	
 	expect_exact() (wexpect.host.SpawnPipe method)

 	(wexpect.host.SpawnSocket method)

 	expect_list() (wexpect.host.SpawnPipe method)

 	(wexpect.host.SpawnSocket method)

G

 	
 	get_from_host() (wexpect.console_reader.ConsoleReaderPipe method)

 	(wexpect.console_reader.ConsoleReaderSocket method)

 	getConsoleOut() (wexpect.console_reader.ConsoleReaderPipe method)

 	(wexpect.console_reader.ConsoleReaderSocket method)

 	
 	getCoord() (wexpect.console_reader.ConsoleReaderPipe method)

 	(wexpect.console_reader.ConsoleReaderSocket method)

 	getOffset() (wexpect.console_reader.ConsoleReaderPipe method)

 	(wexpect.console_reader.ConsoleReaderSocket method)

I

 	
 	init_logger() (wexpect.wexpect_util method)

 	initConsole() (wexpect.console_reader.ConsoleReaderPipe method)

 	(wexpect.console_reader.ConsoleReaderSocket method)

 	
 	interact() (wexpect.console_reader.ConsoleReaderPipe method)

 	(wexpect.console_reader.ConsoleReaderSocket method)

 	isalive() (wexpect.console_reader.ConsoleReaderPipe method)

 	(wexpect.console_reader.ConsoleReaderSocket method)

J

 	
 	join_args() (wexpect.wexpect_util method)

P

 	
 	parseData() (wexpect.console_reader.ConsoleReaderPipe method)

 	(wexpect.console_reader.ConsoleReaderSocket method)

R

 	
 	read() (wexpect.host.SpawnPipe method)

 	(wexpect.host.SpawnSocket method)

 	read_loop() (wexpect.console_reader.ConsoleReaderPipe method)

 	(wexpect.console_reader.ConsoleReaderSocket method)

 	read_nonblocking() (wexpect.host.SpawnPipe method)

 	(wexpect.host.SpawnSocket method)

 	readConsole() (wexpect.console_reader.ConsoleReaderPipe method)

 	(wexpect.console_reader.ConsoleReaderSocket method)

 	
 	readConsoleToCursor() (wexpect.console_reader.ConsoleReaderPipe method)

 	(wexpect.console_reader.ConsoleReaderSocket method)

 	readline() (wexpect.host.SpawnPipe method)

 	(wexpect.host.SpawnSocket method)

 	refresh_console() (wexpect.console_reader.ConsoleReaderPipe method)

 	(wexpect.console_reader.ConsoleReaderSocket method)

 	resume_child() (wexpect.console_reader.ConsoleReaderPipe method)

 	(wexpect.console_reader.ConsoleReaderSocket method)

 	run() (wexpect.host method)

S

 	
 	send() (wexpect.host.SpawnPipe method)

 	(wexpect.host.SpawnSocket method)

 	send_to_host() (wexpect.console_reader.ConsoleReaderPipe method)

 	(wexpect.console_reader.ConsoleReaderSocket method)

 	sendeof() (wexpect.console_reader.ConsoleReaderPipe method)

 	(wexpect.console_reader.ConsoleReaderSocket method)

 	(wexpect.host.SpawnPipe method)

 	(wexpect.host.SpawnSocket method)

 	
 	sendline() (wexpect.host.SpawnPipe method)

 	(wexpect.host.SpawnSocket method)

 	spam() (wexpect.wexpect_util method)

 	SpawnPipe (class in wexpect.host)

 	SpawnSocket (class in wexpect.host)

 	split_command_line() (wexpect.wexpect_util method)

 	str2bool() (wexpect.wexpect_util method)

 	suspend_child() (wexpect.console_reader.ConsoleReaderPipe method)

 	(wexpect.console_reader.ConsoleReaderSocket method)

T

 	
 	terminate_child() (wexpect.console_reader.ConsoleReaderPipe method)

 	(wexpect.console_reader.ConsoleReaderSocket method)

 	
 	TIMEOUT (class in wexpect.wexpect_util)

W

 	
 	wexpect.console_reader (module)

 	wexpect.host (module)

 	wexpect.wexpect_util (module)

 	write() (wexpect.console_reader.ConsoleReaderPipe method)

 	(wexpect.console_reader.ConsoleReaderSocket method)

 	(wexpect.host.SpawnPipe method)

 	(wexpect.host.SpawnSocket method)

 	
 	writelines() (wexpect.host.SpawnPipe method)

 	(wexpect.host.SpawnSocket method)

 _static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Wexpect version 4.0.0

 		
 API documentation

 		
 Wexpect symbols

 		
 Wexpect modules

 		
 Host

 		
 Wexpect util

 		
 Console reader

 		
 History

 		
 Refactor

 		
 Old vs new

